Numerical simulations of the Lagrangian averaged Navier–Stokes equations for homogeneous isotropic turbulence
نویسندگان
چکیده
Capabilities for turbulence calculations of the Lagrangian averaged Navier–Stokes ~LANS-a! equations are investigated in decaying and statistically stationary three-dimensional homogeneous and isotropic turbulence. Results of the LANS-a computations are analyzed by comparison with direct numerical simulation ~DNS! data and large eddy simulations. Two different decaying turbulence cases at moderate and high Reynolds numbers are studied. In statistically stationary turbulence two different forcing techniques are implemented to model the energetics of the energy-containing scales. The resolved flows are examined by comparison of the energy spectra of the LANS-a with the DNS computations. The energy transfer and the capability of the LANS-a equations in representing the backscatter of energy is analyzed by comparison with the DNS data. Furthermore, the correlation between the vorticity and the eigenvectors of the rate of the resolved strain tensor is studied. We find that the LANS-a equations capture the gross features of the flow, while the wave activity below the scale a is filtered by a nonlinear redistribution of energy. © 2003 American Institute of Physics. @DOI: 10.1063/1.1533069#
منابع مشابه
Numerical Simulations of the Lagrangian Averaged Navier-Stokes (LANS-alpha) Equations for Forced Homogeneous Isotropic Turbulence
The modeling capabilities of the Lagrangian Averaged Navier-Stokes-a equations (LANS-a) is investigated in statistically stationary three-dimensional homogeneous and isotropic turbulence. The predictive abilities of the LANS-a equations are analyzed by comparison with DNS data. Two different forcing techniques were implemented to model the energetics of the energy containing scales. The resolve...
متن کاملAiaa 2001-2645 Numerical Simulations of the Lagrangian Averaged Navier-stokes (lans-α) Equations for Forced Homogeneous Isotropic Turbulence
The modeling capabilities of the Lagrangian Averaged Navier-Stokes-α equations (LANS-α) is investigated in statistically stationary three-dimensional homogeneous and isotropic turbulence. The predictive abilities of the LANS-α equations are analyzed by comparison with DNS data. Two different forcing techniques were implemented to model the energetics of the energy containing scales. The resolve...
متن کاملNumerical Simulations of Homogeneous Turbulence using Lagrangian - Averaged
The Lagrangian-averaged Navier-Stokes equations (LANS) are numerically evaluated as a turbulence closure. They are derived from a novel Lagrangian averaging procedure on the space of all volume-preserving maps and can be viewed as a numerical algorithm which removes the energy content from the small scales (smaller than some a priori xed spatial scale ) using a dispersive rather than dissipativ...
متن کاملThe effect of microbubbles on developed turbulence
The motion and the action of microbubbles in homogeneous and isotropic turbulence are investigated through ~three-dimensional! direct numerical simulations of the Navier–Stokes equations and applying the Lagrangian approach to track the bubble trajectories. The forces acting on the bubbles are added mass, drag, lift, and gravity. The bubbles are found to accumulate in vortices, preferably on th...
متن کاملAbout scaling properties of relative velocity between heavy particles in turbulence
We present results obtained from high-resolution direct numerical simulations (DNS) of incompressible, statistically homogeneous and isotropic turbulence, up to a Taylor scale based Reynolds number Reλ ≃ 200 and with millions of heavy particles with different inertia. In our set-up, particles are assumed to be spherical and rigid, they simply move by viscous forces, such as the Stokes drag. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003